Параметры

Редакция Без Сменки
Честно. Понятно. С душой.

Пора начать разбираться с один и самых сложных заданий на ЕГЭ – с параметрами. Этот номер может принести целых 4 балла.

Итак, параметр – это буква (обычно в заданиях используют букву а), вместо которой можно подставить число. 

Решить задачу с параметром – значит найти такое значение параметра а, при котором будет выполняться условие задачи. Стоит отметить, что существует огромное количество различных вариантов формулировки задачи. Самым популярным является: «Найти все значения параметра а, при котором уравнение такое-то имеет столько-то корней».

Что нужно знать, чтобы научиться решать параметры?

Таким вопросом задаются многие школьники. Ответ прост: буквально всё. Параметры – самая обширная тема ЕГЭ, тут может быть и тригонометрия, и функции (здесь надо уметь исследовать функцию при помощи производной), и степени, и логарифмы, и дроби и всё-всё-всё остальное, а возможно и все темы сразу. Причём не только в уравнениях, но и в неравенствах. 

Так что прежде чем браться за параметры, убедись, что ты отлично решаешь обычные уравнения, щёлкаешь неравенства, а первая часть занимает у тебя не более 15-ти минут.

Краткий алгоритм решения параметров, где дробь равна нулю:

1) необходимо перейти к системе, состоящей из двух условий: знаменатель не равен 0, а числитель равен 0.

2) далее нужно дать условие, чтобы уравнение (числитель) имело два корня, следовательно его дискриминант больше 0.

3) выписать дискриминант, обозначить, что он больше 0 и решить неравенство.

4) выразить из неравенства (которое вышло из знаменателя) а и подставить в уравнение (числитель).

5) дать условие, что при подстановке а в уравнение не должно получаться верное равенство.

6) выписать промежуток из пункта 3 и выколоть точки, которые получились в пункте 5. Это и будет ответ.

Параметры с модулем

Для начала стоит вспомнить, что же такое модуль и как его раскрыть.

Модуль числа — это расстояние, а расстояние не может быть отрицательным. Поэтому и модуль числа не бывает отрицательным:

|a| > 0 

Модуль положительного числа равен самому числу.

|a| = a, если a > 0

Модуль отрицательного числа равен противоположному числу.

|−a| = a

Модуль нуля равен нулю.

|0| = 0, если a = 0

Противоположные числа имеют равные модули.

|−a| = |a| = a

Когда писать систему, а когда совокупность? 

Многие ученики, решая параметры (и не только их) задаются вопросом: тут ставить систему или совокупность? 

В двух словах это можно прокомментировать так: 

Если надо пересечь решения, то будет система, а если объединить – совокупность. Или, сформулировав по-другому, скажем: система – это когда мы говорим «выполняется и одно условие, и другое», а совокупность –  «и то, и другое».

Допустим, мы решаем квадратное уравнение, в котором дискриминант больше нуля. Следовательно оно будет иметь два корня. Но ведь х не может быть двумя числами одновременно, а значит мы говорим, что х – это такое-то число или другое число. 

(по оформлению: такое-то число и другое число сделать более бледным, серым)

В этом случае мы используем совокупность. 

Заметим, что когда мы решаем квадратное уравнение по теореме Виета (а кто-то вообще использует теорему Виета вместо дискриминанта?), то условие о сумме и произведении мы записываем в системе, ведь они должны выполняться одновременно: 

x2+px+q=0

{ x1+x2=-p

x1*x2=q

 

 

 

 

Где вы учитесь?

Вам также будет интересно

Ускорение свободного падения
Падение тел в воздухе можно приближенно считать свободным лишь при условии, что сопротивление воздуха мало и им можно пренебречь. 🌍 Ускорение...
Правила постановки тире в предложении
Тире в простом предложении В первую очередь — между подлежащим и сказуемым, выраженными: 🔸 существительным в им. п. — существительным в им. п. ...
Как решать четвёртое задание в ЕГЭ 2026 по русскому языку
Разбираем алгоритм решения и теорию для выполнения четвёртого задания в ЕГЭ 2026 по русскому языку.  Алгоритм Внимательно прочитайте...
Алгоритм решения дробно-рациональных уравнений
Под страшным словосочетанием дробно-рациональные уравнения, скрываются симпатичные уравнения, которые не так сложно решаются. Пойдем разбираться...
Экономика в период перестройки
1985 принятие курса на социально-экономическое ускорение страны (XII пятилетка: 1986–1990) начало проведения антиалкогольной кампании...
Сложные проценты
Как представить процент в виде десятичной дроби? Смещаем десятичную запятую на два знака влево и убираем значок %. 32% = 0,32 892% = 8,92 Как...

0 комментария

Авторизуйтесь, чтобы оставить комментарий.