Прогрессия

Редакция Без Сменки
Честно. Понятно. С душой.

Арифметическая прогрессия

-> Последовательность, в которой каждый следующий член можно найти, прибавив к предыдущему одно и то же число 𝑑, называется арифметической прогрессией.

-> Если последовательность (𝑎𝑛 ) является арифметической прогрессией, то для любого натурального значения 𝑛 справедлива зависимость 𝑎𝑛+1 =𝑎𝑛 +𝑑.

-> Число 𝑑 называется разностью арифметической прогрессии.

-> Если известен первый член арифметической прогрессии 𝑎1 и разность 𝑑, то возможно вычислить любой член арифметической прогрессии: 

𝑎2 = 𝑎1+𝑑;

𝑎3= 𝑎2+𝑑 = 𝑎1 +2𝑑;

𝑎4 = 𝑎3 +𝑑 = 𝑎1+3𝑑

и т. д.

Пример:

-> 𝑛-ый член арифметической прогрессии можно получить, если к первому члену прогрессии добавить (𝑛−1) разностей, т. е., 𝑎𝑛=𝑎1+𝑑(𝑛−1), где 𝑛 — порядковый номер члена прогрессии, 𝑎1— первый член прогрессии, 𝑑 — разность.

Это равенство называется общей формулой арифметической прогрессии.

Её используют, чтобы вычислить 𝑛-ый член арифметической прогрессии (например, десятый, сотый и др.), если известны первый член последовательности и разность.

Сумма первых n членов арифметической прогрессии.

Сумму первых n членов арифметической прогрессии можно найти, используя формулу: 𝑆𝑛= (𝑎1+𝑎𝑛)⋅𝑛 / 2, где 𝑛 — число членов последовательности. 


Геометрическая прогрессия

-> Последовательность (𝑏), в которой каждый последующий член можно найти, если предыдущий член умножить на одно и то же число 𝑞, называется геометрической прогрессией.

-> Если последовательность (𝑏𝑛) является геометрической прогрессией, то для любого натурального значения𝑛справедлива зависимость: 𝑏𝑛+1=𝑏𝑛⋅𝑞.

-> Число 𝑞 называется знаменателем геометрической прогрессии.

-> Если в геометрической прогрессии (𝑏𝑛) известен первый член 𝑏1 и знаменатель 𝑞, то возможно найти любой член прогрессии.

𝑏2 = 𝑏1⋅𝑞;

𝑏3 = 𝑏2⋅𝑞 = 𝑏1⋅𝑞⋅𝑞 = 𝑏1⋅𝑞^2;

𝑏4 = 𝑏1⋅𝑞^3

и т. д.

-> Общий член геометрической прогрессии 𝑏𝑛  можно вычислить, используя формулу: 𝑏𝑛 =𝑏1⋅𝑞𝑛-1, где 𝑛— порядковый номер члена прогрессии, 𝑏1 — первый член последовательности, 𝑞— знаменатель.

Сумма первых 𝑛 членов геометрической прогрессии

Сумму первых 𝑛 членов геометрической прогрессии 𝑆𝑛 можно найти, если вычислить её члены 𝑏1, 𝑏2…𝑏𝑛 и затем их значения сложить.

1-я формула: 𝑆𝑛=𝑏𝑛𝑞−𝑏1 / 𝑞−1

𝑏1 — первый член геометрической прогрессии,

𝑏𝑛𝑛-ый член геометрической прогрессии, 

𝑞— знаменатель,

𝑛— количество членов последовательности (порядковый номер). 

2-я формула: 𝑆𝑛 =𝑏1(𝑞𝑛−1) / 𝑞−1

Пример оформления:

 

 

Где вы учитесь?

Вам также будет интересно

АЛГОРИТМ РЕШЕНИЯ ТЕКСТОВЫХ ЗАДАЧ
Все или почти все текстовые задачи идут по одной проверенной схеме. Сначала естественно, нужно прочитать текст самой задачи, затем нарисовать к ней...
Внешняя политика XIX века
💥 1877 – 1878 гг. – Русско-турецкая война — командующие: М. Д. Скобелев, И. В. Гурко, Н. Г. Столетов; — причины: поддержка Россией национального...
Правописание суффиксов
Начинаем говорить об очень сложной теме — правописание суффиксов. Подобрала для тебя самые сочные правила. 🔸 Запомнить: в словах ночЁвка, корчЁвка...
Паронимы, которые встретятся на ЕГЭ
Хей! А вот и те самые паронимы, которые точно тебе попадутся на ЕГЭ по русскому языку. От надеть–одеть, до выгода–выгодность: в этой шпаргалке...
Феодальная война (1425 — 1453 гг.)
👉🏻 ПРИЧИНЫ ФЕОДАЛЬНОЙ ВОЙНЫ — Отсутствие четкого права престолонаследия. — Большое количество претендентов на власть. 👉🏻 ПОВОД К ВОЙНЕ Попытка...
Первый закон термодинамики
И вычислить его можно по формуле 👇 Например, вы кипятите чайник с водой. Количество тепла расходуется на их нагревание (увеличивается энергия...

0 комментария

Авторизуйтесь, чтобы оставить комментарий.