Методы решения тригонометрических уравнений

Редакция Без Сменки
Честно. Понятно. С душой.

Чтобы решить тригонометрическое уравнение, необходимо: преобразовать уравнение до простейшего вида и  затем решить полученное простейшее тригонометрическое уравнение. 

Привести уравнение к простейшему виду можно несколькими способами.

Метод замены переменной (или алгебраический метод)

Алгоритм: 

  • Привести уравнение к алгебраическому виду относительно одной из тригонометрических функций.
  • Обозначить полученную функцию переменной t (если необходимо, ввести ограничения на t).
  • Записать и решить полученное алгебраическое уравнение.
  • Сделать обратную замену.
  • Решить простейшее тригонометрическое уравнение.

Пример: Решить уравнение  2cos2x+5sinx=5

2(1-sin2x)+5sinx=5

2sin2x+5sinx+3=0

Делаем замену sin2x=t, тогда 

2t2+5t+3=0

t1=1

t2=32

Делаем обратную замену. Поскольку -1sinx1, то корень t2=32 не подходит. Следовательно осталось решить sinx=1

x=2+2n, nZ. Это и будет ответом.

Разложение на множители

Очень хорошо, если уравнение удаётся представить в таком виде, что в левой части стоит произведение двух или нескольких множителей, а в правой части — ноль. Произведение двух или нескольких множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю. Сложное уравнение, таким образом, распадается в совокупность более простых.

Алгоритм: 

  • Привести уравнение к алгебраическому виду относительно одной из тригонометрических функций.
  • Вынести за скобки общий множитель (разложить на множители)
  • Решить итоговое уравнение.

Пример: Решить уравнение  sin3x+sin7x=2sin5x

Применим формулу суммы синусов 2sin5xcos2x=2sin5x

2sin5xcos2x-2sin5x=0

2sin5x(cos2x-1)=0

Имеем совокупность из двух уравнений, которые решим по отдельности:

2sin5x=0      x=n5, nZ

cos2x-1=0  x=n, nZ

Заметим, что x=n является частью x=n5, если рассматривать тригонометрическую окружность. Тогда ответ будет x=n5, nZ .

Однородные уравнения 

Рассмотрим уравнение: sin2x+2sinxcosx-3cos2=0.

Степень каждого слагаемого в левой части равна двум. Точно так же, как в обычном многочлене a2+2ab-3b2степень каждого слагаемого равна двум (степень одночлена — это сумма степеней входящих в него сомножителей).

Поскольку степени всех слагаемых одинаковы, такое уравнение называют однородным. Для однородных уравнений существует стандартный приём решения — деление обеих его частей на . Возможность этого деления, однако, должна быть обоснована: а что, если косинус равен нулю?

Запомни: Предположим, что cosx=0. Тогда в силу уравнения и sinx=0, что противоречит основному тригонометрическому тождеству. Следовательно, любое решение данного уравнения удовлетворяет условию cosx0, и мы можем поделить обе его части на cos2x.

В результате деления приходим к равносильному квадратному уравнению относительно тангенса:

tg2x+2tgx-3=0

Это были основные три метода решения тригонометрических уравнений. Именно они обычно применяются в 12 задании ЕГЭ. Так что больше тренируйся и делай домашние задания!

 

 

Где вы учитесь?

Вам также будет интересно

Все типы 6-го задания в ЕГЭ-2024 по географии
1 тип - размещение населения России Какие три из перечисленных регионов России имеют наибольшую среднюю плотность населения? Запишите в таблицу...
Порядок слов в отрицательных предложениях
Не могу и не хочу! Как построить отрицательное предложение? Рассказываем в этой шпаргалке.  Есть несколько способов, с помощью которых...
Функции Совета Федерации по Конституции РФ
Кратко разбираем функции Совета Федерации по Конституции РФ для ЕГЭ по обществознанию.  а) утверждение изменения границ между субъектами...
Ремарка
Театр одного актера (Вокруг — зрительный зал. Пришедшие на театральное представление переговариваются) Внимание!Минуту внимания! (кричит)...
Литосфера
В этой шпаргалке мы собрали для вас всю нужную информацию по теме «Литосфера», которая встретится вам на ЕГЭ по географии. Разбираем все основные...
ЗАДАНИЕ 2 | Соленость морей
Включает перечисление трёх морей, имеющих разную солёность вод. В ответе необходимо записать последовательность цифр в порядке повышения (понижения)...

0 комментария

Авторизуйтесь, чтобы оставить комментарий.